2P WORKSHOP ON ARTIFICIAL INTELLIGENCE FOR MULTIMEDIA

Adversarial attacks impact on physical environment
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Abstract—As deep learning continues to transform computer
vision, camera-based smart systems are becoming integral to
critical fields such as autonomous driving, surveillance, and
biometric authentication. Unfortunately, this growing reliance on
visual data exposes these systems to a serious category of adver-
sarial threats: physical adversarial attacks. Unlike their digital
counterparts, these attacks utilize real-world perturbations—like
stickers, clothing, or projected light—to deceive deep neural
networks in uncontrolled environments. This article explores the
mechanics, challenges, and consequences of physical adversarial
attacks, providing an overview of the latest trends and research
over the past decade. It emphasizes the practical implications
of these attacks, their stealth tactics, and the urgent need for
effective defense strategies.

Index Terms—Al threats, vulnerabilities, ML-DL, adversarial
attacks, physical space

I. INTRODUCTION

While adversarial machine learning has gained attention
primarily through digital attacks, recent research exposes a
more concerning reality: attacks manifesting physically in
our environment. These “physical adversarial attacks” involve
perturbing tangible objects in the real world, such as traffic
signs, clothing, or facial accessories, with crafted patterns to
deceive camera-fed models. As digital attacks imply that the
adversary may have direct access to the data fed into the
model, the physical ones do not know the digital representation
of the data; the model is being directly fed with sensor
inputs (e.g., images from video cameras and microphones).
The danger lies in their deployability without any system
access, making them both practical and threatening for black-
box settings.

There are also concerns about the potential limitations of
continual learning approaches against adversarial attacks, and
their suitability for deployment in real-world settings [2].

II. FEATURE VISUALIZATION AND ADVERSARIAL
EXAMPLES

Feature visualization provides insight into how neural net-
works operate, showcasing their hierarchical extraction and
representation of features—from low-level textures to high-
level semantic concepts. Its effectiveness relies heavily on
appropriate regularization, an effective optimization strategy,
and careful architectural considerations. [3], [4], [5]

Neural networks do not just memorize—they learn struc-
tured, reusable, and interpretable features. With the right tools,
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Fig. 1: Digital vs physical adversarial attacks [1].

we can begin to decode what those features are, why they
matter, and how to make networks more transparent.

New approaches emphasize how adversarial examples can
be integrated into explainable machine learning scenarios. This
allows humans to gain insight not only into the input and the
output classification but also into the reasoning behind the
model’s decision. This information can be further utilized to
generate and understand adversarial perturbations [6].

III. ATTACK IMPLICATIONS IN PHYSICAL SPACE

A. Attack Modalities and Real-World Forms

o Patch- and Sticker-Based Attacks: Strategically placed
perturbations on objects or persons. These patches can
cause misclassification (e.g., turning a stop sign into a
speed-limit sign) [7], [8].

o Camouflaged Clothing: T-shirts or cloaks printed with
adversarial textures that evade person detectors. Such
attacks gain stealth by mimicking natural patterns or
graffiti [9], [10].

o Wearable Accessories: Adversarial glasses, hats, and
masks have proven effective in impersonating identities
or evading facial recognition systems.

o Light-Based Perturbations: Laser beams or projectors can
inject malicious patterns into scenes without touching
the object, offering transient and highly stealthy attack
mechanisms [11].
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o Device Manipulation: Some attacks modify the imaging
process itself, e.g., placing stickers on camera lenses or
exploiting rolling shutter effects [12].

B. Practical Challenges

o Viewpoint Variation: Unlike digital attacks, physical ones
must remain effective from diverse angles and distances.

o Environmental Lighting: Shadows, reflections, and light-
ing shifts can degrade or reveal perturbations.

o Fabrication Constraints: Perturbations must be printable
and physically realizable with accurate color reproduction
and minimal fabrication error.

o Non-Rigid Deformation: Especially with wearables like
shirts, the surface continuously deforms due to body
movement.

C. Evaluation metrics

Although there are no standard evaluation metrics, different
survey papers propose some comprehensive evaluation metrics
for stealth, robustness, and transferability [1].

« Stealth: Some attacks mimic real-world textures (graffiti,
logos, clothing styles) to avoid raising suspicion from
humans or surveillance monitors.

o Transferability: Robust attacks aim to deceive multiple
models, across architectures and training datasets, en-
hancing their practical threat level.

o Advanced generation techniques (e.g., Expectation Over
Transformation, Thin Plate Spline deformation, and natu-
ralistic patch synthesis using GANs) enhance robustness
under dynamic conditions and viewing transformations.

D. Implications for Safety-Critical Systems

With life-threatening implications, especially for Al-based
solutions that are being used in Safety-Critical Systems and
infrastructures, physical adversarial attacks pose a significant
practical threat as they deceive deep learning systems by
producing prominent and maliciously designed physical per-
turbations.

o Autonomous Vehicles: Adversarial traffic signs can cause
misinterpretation, leading to navigation failures or acci-
dents.

 Surveillance and Law Enforcement: Attackers can evade
detection or impersonate identities, undermining public
safety.

o Biometric Access Systems: Adversarial masks or glasses
can bypass facial authentication systems, granting unau-
thorized access [13].

As these attacks become increasingly sophisticated, they erode
trust in Al-powered security infrastructure.

IV. CONCLUSIONS

Physical adversarial attacks mark a dangerous evolution
of adversarial machine learning—stepping out of simulated
environments and into the physical world. Their stealth, ac-
cessibility, and growing efficacy demand immediate attention
from the security and Al communities. Securing perception

models in real-world settings is no longer optional—it is a
critical necessity for the future of safe, trustworthy Al

Defending against physical adversarial threats remains an
open challenge. Promising avenues include:

o Real-world-aware training with adversarial augmentation;

o Cross-modal verification (e.g., combining visual and IR
data); [14].

e On-device anomaly detection to flag improbable visual
patterns;

e Using the feature visualisation and explainable Al in
realation to adversarial samples.

Moreover, standardizing benchmarks for physical adversarial
robustness and integrating simulation-to-reality pipelines dur-
ing model training will be crucial.
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