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Abstract—In this work, we focus on the Flexible Representation
of Quantum Images (FRQI), a promising encoding scheme for
grayscale image data. We characterize its qubit requirements
and circuit depth under both idealized conditions and realistic
hardware constraints, revealing the severe limitations posed by
current quantum devices. These findings reflect the broader issue
of quantum data loading, a fundamental bottleneck in many
applications, particularly in quantum machine learning.

Index Terms—quantum encoding, quantum machine learning

I. INTRODUCTION

Quantum computing offers fundamentally new modes of
information processing by exploiting superposition and en-
tanglement. These potentially allow quantum algorithms to
manipulate information in exponentially large vector spaces
using relatively few qubits, promising advantages over clas-
sical computation for certain tasks [1]. However, encoding
classical data into quantum states requires significant resource
overhead and is severely constrained by the limitations of
current quantum hardware [2].

This challenge is especially pronounced for image data,
given its high dimensionality and inherent spatial structure.
This article presents the data loading bottleneck using the
example of the Flexible Representation of Quantum Images
(FRQI) encoding scheme [3] and discusses potential strate-
gies for achieving meaningful near-term progress in Quantum
Machine Learning (QML) despite these limitations.

II. QUANTUM INFORMATION

A qubit is best viewed as a vector in a two-dimensional
complex vector space, spanned by the classically possible
states |0⟩ and |1⟩. When measured, the squared modulus of
the projection onto each basis state gives the corresponding
probability of observing each classical state, 0 or 1.

This framework naturally extends to multi-qubit systems:
the state of an n-qubit register is a vector in a 2n-dimensional
complex Hilbert space, spanned by all 2n classical bit strings.
A general pure quantum state can be expressed as:

|ψ⟩ =
2n−1∑
i=0

ci|i⟩, (1)

with complex amplitudes ci which satisfy
∑

i |ci|2 = 1,
enabling interference and entanglement [1].

Operations on quantum registers, implemented as sequences
of quantum gates, correspond to unitary transformations on
this vector space. Specifically, an operation on n qubits is
described by a 2n×2n unitary matrix. This exponential scaling
of the underlying vector space quickly overwhelms classical
resources [1, 2]. For instance, even the most powerful super-
computers, with roughly 10 petabytes of RAM, can simulate
only about 50 qubits without employing approximations. In
this light, state-of-the-art noisy intermediate-scale quantum
(NISQ) processors with a few hundred qubits already represent
a remarkable leap in computational capacity.

III. QUANTUM IMAGE ENCODING

Quantum algorithms rely on encoding classical data into
quantum states, with performance heavily influenced by the
chosen encoding scheme. Superposition enables compact rep-
resentation using relatively few qubits, allowing quantum
parallelism. However, this comes at the cost of increased
embedding complexity [1]. In this work, we focus on image
data, which is particularly challenging due to its high di-
mensionality, spatial structure, and color information, making
efficient quantum encoding non-trivial. In the following, we
focus on the Flexible Representation of Quantum Images
(FRQI), as it offers greater practicality for near-term quantum
hardware [4]. However, the challenges discussed later are
broadly applicable to other quantum encoding schemes as well.

FRQI represents grayscale images by encoding spatial
position into computational basis states |i⟩, where each i
corresponds to the binary representation of a pixel location.
The normalized pixel intensity is embedded into the amplitude
of a single, shared color qubit, parameterized as an angle:
cos θi|0⟩ + sin θi|1⟩. For an image of size 2n × 2n, the full
expression of the FRQI representation is:

|I⟩ = 1

2n

22n−1∑
i=0

(cos θi|0⟩+ sin θi|1⟩)⊗ |i⟩, (2)

where ⊗ is the tensor product. FRQI requires 2n qubits to
represent position, spanning a 22n-dimensional Hilbert space,
and one additional qubit for intensity, yielding a total of 2n+1
qubits [3]. To illustrate the exponential memory efficiency,
n = 12 corresponds to a 4096 × 4096 pixel image, which
can be encoded using only 25 qubits. However, this comes at
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the cost of circuit depth: the ideal depth scales as O(N · n),
where N = 22n is the total number of pixels. This depth
results from the need of a multi-controlled rotation gate for
each pixel, conditioned on the pixel index |i⟩. Because there
is a single pixel intensity qubit, these operations can not
be performed in parallel. As noted earlier, this trade-off is
general: embedding schemes that achieve exponential memory
compression typically come at the cost of exponential gate
depth with respect to the number of qubits [4].

IV. THE BOTTLENECK

It is clear from the FRQI example that the data-loading
bottleneck arises primarily from the circuit depth overhead.
Current quantum hardware is in the Noisy Intermediate-Scale
Quantum (NISQ) era, characterized by limited qubit counts
and substantial noise. The runtime of quantum algorithms is
constrained by the coherence time, the interval during which
quantum states retain coherence before decaying into classical
mixtures. Furthermore, quantum operations are analog and
imperfect, leading to accumulating gate errors. Collectively,
these limitations impose a practical upper bound on executable
quantum circuits, typically around 1000 native gates, beyond
which meaningful quantum output becomes unreliable [2].

The fact that each pixel requires a controlled rotation
would restrict data loading to images with at most 1000
pixels. However, realistic implementations must account for
additional overhead. Unlike theoretical models, NISQ devices
support only a restricted set of native gates (e.g., Rz ,

√
X , and

CNOT), and exhibit limited qubit connectivity. For example,
implementing a single controlled rotation may require up to 32
native gates under standard gate decompositions, reducing the
feasible image size to approximately 31 pixels. Furthermore,
qubit routing via SWAP operations introduces additional
depth overhead when logical qubits are not directly connected,
further tightening the constraints [2, 4].

These estimates are not exact but illustrate the scale of the
resource gap between theoretical and experimental implemen-
tations. Noisy simulations often fail to capture the full behavior
of real devices, and quantum hardware access remains limited.
A notable hardware demonstration was conducted by Geng et
al. [4], who tested an optimized variant of FRQI. Although
the theoretical encoding was designed to support images up
to 64 × 64 pixels, experimental results on superconducting
quantum hardware showed that only 2 × 2 pixel images
could be reliably reconstructed from quantum encoding. Figure
1 compares the target image, simulated reconstruction, and
hardware reconstruction for the failed 4× 4 image case.

V. DISCUSSION

In image-based machine learning, datasets are typically
large and high-dimensional, often comprising millions of
pixels. The previous analysis focused exclusively on quantum
data loading, which already presents a significant bottleneck.
This issue is particularly acute in quantum machine learning
(QML), where the overhead of encoding large datasets limits
feasibility on current NISQ hardware [2].

Fig. 1: Input image and FRQI reconstructions, both simulated
and from quantum hardware. Image credit: [4]

Although quantum devices have shown early utility in simu-
lation and optimization, clear QML utility remains elusive. The
gap lies largely in the mismatch between dataset complexity
and current hardware constraints. Hybrid quantum-classical
approaches aim to reduce quantum resource demands, but
they bring new challenges, such as repeated classical–quantum
communication and unclear quantum advantage [5].

To advance QML under existing hardware limitations, atten-
tion should shift toward small, low-dimensional datasets that
remain challenging for classical models. Such tasks avoid the
data loading barrier while offering a meaningful testbed for
quantum processing. Identifying and targeting these problems
is essential to exploring the practical potential of future QML
applications, beyond the current data loading bottleneck.

VI. CONCLUSION

Quantum image encoding schemes such as FRQI demon-
strate the promise of exponential compression in qubit usage,
but also expose the critical bottleneck of circuit depth. While
simulations suggest feasibility for encoding high-resolution
images, real quantum hardware imposes severe constraints. A
promising direction in the context of QML is to find alternative
datasets that are information-rich yet low in size or dimension-
ality, thereby enabling the exploration of competitive QML
algorithms under realistic hardware constraints.
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