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Abstract—Vehicle Make and Model Recognition (VMMR) is
vital for intelligent transportation and surveillance but remains
challenged by subtle inter-class visual similarities, intra-class
diversity, and the emergence of unseen vehicle types. While deep
learning methods perform well on known classes, they struggle
to generalize at scale. This paper surveys recent advances in
zero-shot learning (ZSL) and vision-language models (VLMs)
such as CLIP, LiT, and PaLl, which enable recognition without
direct supervision. We further propose a hybrid pipeline com-
bining prompt engineering, LoRA-based tuning, and InfoNCE
regularization to address these limitations and support scalable,
fine-grained vehicle classification.

Index Terms—Vehicle Recognition, Zero-Shot Learning, Un-
seen Classes, Fine Grained, Vision Language

I. INTRODUCTION

Vehicle Make and Model Recognition (VMMR), an emerg-
ing research area within Intelligent Transportation Systems
(ITS), has recently gained significant attention [1]. In auto-
motive terminology, “make” refers to the manufacturer of a
vehicle (e.g., Honda, BMW, Nissan), whereas “model” de-
notes a particular vehicle type produced by that manufacturer
(e.g., Civic, 3 Series, Altima). VMMR systems are widely
utilized in various applications such as the identification of
suspicious vehicles [2], traffic management [3], surveillance
[4], anomaly detection [5], traffic analytics [6], autonomous
vehicles [7], and the identification of suspicious vehicles [1]
and law enforcement [5]. Despite substantial advancements
in License Plate Recognition (LPR) technologies, which cur-
rently dominate vehicle detection and identification within
security and surveillance systems, reliance exclusively on
license plates remains problematic. License plates can be
intentionally concealed, altered, or replaced, significantly im-
pairing system reliability. Knowledge of a vehicle’s make and
model allows the retrieval of extensive data such as vehicle
weight, dimensions, production year, maximum speed, engine
horsepower, and capacity. Integrating this detailed vehicle
information with LPR can substantially enhance the accuracy
and efficacy of security and surveillance systems. VMMR
represents a type of fine-grained intra-category classification,
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which is a specialized area within the broader field of fine-
grained object recognition. Fine-grained classification aims
to distinguish among highly similar objects within the same
category. The large number of existing classes, combined
with significant inter-class variations and subtle intra-class
differences, makes fine-grained classification tasks, including
VMMR, particularly challenging. These minimal visual dis-
tinctions can be extremely difficult for human observers to
discern in certain instances.

Front-view vehicle images are considered the most effective
choice for VMMR for two primary reasons. First, vehicles
with identical body styles (sedan, SUV, MPV, truck, etc.) can
appear highly similar from specific angles. [9] These simi-
larities result from industry standards, such as aerodynamic
requirements, complicating accurate recognition. Second, cer-
tain vehicle models from the same manufacturer share similar
platforms, with only minor variations present primarily in
their frontal sections, including headlights, grills, and bumpers.
Consequently, front-view imagery provides the most discrim-
inative visual features essential for reliable recognition.

One major challenge in developing deep learning-based
VMMR systems is the scarcity of comprehensive, high-quality
datasets suitable for network training. This challenge is inten-
sified by the continual introduction of new vehicle models
and the retirement of older ones, necessitating regular dataset
updates to maintain relevance and accuracy. Additionally,
real-world operational environments introduce further com-
plexities. Variations in lighting conditions, obstructions, and
environmental factors such as fog, snow, and dust significantly
affect the reliability and precision of VMMR systems [8].
To address these challenges and enhance traffic security and
monitoring efficiency, research in VMMR increasingly em-
phasizes the development of robust and accurate recognition
methods using front-view vehicle images. This requires the
availability of detailed and regularly updated datasets, which
include extensive annotations for critical vehicle components
such as headlights, grills, and bumpers. This detailed annota-
tion supports targeted preprocessing and robust classification,
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significantly enhancing the overall effectiveness and reliability
of VMMR solutions. Moreover, the rise of unseen vehicle
models highlights the limits of supervised learning. Zero-shot
learning (ZSL) offers a practical solution by enabling recog-
nition of classes not present during training, using semantic
cues like text or attributes. This approach supports scalable
and adaptable VMMR without constant data updates.

II. RELATED WORK IN VEHICLE RECOGNITION

Fine-grained vehicle make and model recognition (VMMR)
is crucial in the broader context of Intelligent Transporta-
tion Systems (ITS) and Advanced Driver Assistance Systems
(ADAS), aimed at enhancing safety, surveillance, and auto-
mated traffic management. This task, however, is inherently
challenging due to issues such as inter-class similarity, where
different vehicle models or makes exhibit highly similar visual
features, and intra-class diversity, characterized by substantial
variations within a single vehicle model due to generational
changes, customization, or varied imaging conditions.

Traditional deep learning methods, particularly convolu-
tional neural networks (CNNs), have significantly advanced
VMMR by automating the extraction of discriminative features
directly from extensive image datasets. Among the notable
developments in this area is the DeepCar 5.0 framework pro-
posed by Amirkhani and Barshooi (2023) [9], which employs
a multi-agent ensemble learning system. This framework uses
individual CNNs trained separately on distinct vehicle parts
such as headlights, grills, and bumpers, thereby enhancing
accuracy in challenging conditions including partial occlusion
and variable illumination.

Complementing this, the Two-Branch Two-Stage architec-
ture introduced by Lyu et al. (2022) [10] effectively mitigates
classification ambiguity by segmenting the recognition task
into separate branches for vehicle make and model identifica-
tion. This structural approach significantly reduces confusion
between closely related vehicle categories, consequently im-
proving recognition precision. Furthermore, Lu et al. (2023)
[11] proposed a part-level feature optimization strategy within
CNN frameworks, optimizing and aggregating local features
without additional manual annotations. This approach notably
enhances performance in fine-grained tasks and provides com-
putational efficiency. Another innovative method in CNN-
based vehicle recognition is the Bag of Expressions (BoE)
model presented by Jamil et al. (2020) [12]. BoE builds
upon traditional Bag-of-Words methods by integrating neigh-
borhood contextual information with Histogram of Oriented
Gradients (HOG) descriptors, coupled with multi-class linear
Support Vector Machines (SVMs). This model adeptly man-
ages issues like scale variance and occlusions, demonstrating
significant robustness and flexibility in practical applications.

More recent developments in deep learning have seen at-
tention mechanisms and transformer architectures emerge as
powerful tools in the domain of vehicle recognition. Attention
mechanisms, as utilized by Amirkhani and Barshooi (2023)
[9], allow for selective focus on critical vehicle regions,
boosting fine-grained accuracy and robustness. Similarly, Taki
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and Zemmouri (2023) [13] applied Vision Transformer (ViT)
models to vehicle image classification tasks, demonstrating
superior performance compared to traditional CNN methods,
especially when processing small datasets with low-resolution
images. Transformers inherently capture extensive relational
information between image patches, providing strong advan-
tages for complex visual tasks.

Data augmentation and clustering techniques have also
been pivotal in enhancing CNN robustness. Nafzi et al. [14]
effectively applied data augmentation alongside hierarchical
clustering to address both inter-class similarity and intra-
class diversity, significantly improving CNN performance.
This methodological synergy provides a practical framework
for continuously refining recognition models, essential for
maintaining high performance in dynamic real-world scenar-
ios.

In parallel to traditional deep learning approaches, alterna-
tive learning paradigms such as zero-shot learning (ZSL) and
few-shot learning (FSL) have gained considerable attention
due to their ability to handle new vehicle categories with
limited or no prior training examples. Zero-shot learning
specifically addresses the recognition of previously unseen ve-
hicle models by leveraging semantic embeddings. Approaches
such as CLIP, RegionCLIP, and SigLIP utilize visual-semantic
mappings to generalize across unseen classes based on learned
semantic relationships, thus providing a crucial solution for
recognizing emergent vehicle models without explicit visual
training.

Few-shot learning, exemplified by RelationNet++ (Kezebou
et al.) [15], addresses scenarios where only minimal visual
examples per new vehicle model are available. RelationNet++
effectively generalizes recognition capabilities using relational
reasoning, surpassing conventional CNN approaches even with
minimal training samples. This methodology demonstrates
practical scalability and adaptability, essential for environ-
ments with frequently introduced new vehicle models.

Additionally, open-set recognition (OSR) represents another
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crucial advancement, distinct from zero-shot learning. OSR
approaches, such as the framework proposed by Vazquez-
Santiago et al. [16], dynamically detect novel vehicle cate-
gories during real-time operation without pre-existing semantic
information. Using probabilistic models and clustering tech-
niques, OSR methods not only reject unknown instances but
simultaneously identify and integrate them into the model,
enabling continuous learning and adaptation. This is partic-
ularly beneficial in practical applications, where encountering
unrecognized vehicle types is commonplace.

III. ZERO-SHOT TECHNIQUES FOR UNSEEN VEHICLE
CLASSES

Modern computer vision systems have achieved exceptional
performance through supervised deep learning approaches
trained on large-scale labeled datasets such as ImageNet (Deng
et al., 2009) [17]. However, this progress is limited by the
cost of manual annotation and the inability to anticipate all
visual categories in advance. In fine-grained tasks such as
vehicle make and model recognition, these limitations are
particularly problematic: vehicle variants evolve rapidly, and
data collection cannot keep pace with the emergence of new
models (Dong et al., 2024; Semiromizadeh et al., 2025) [18],
[19]. Zero-Shot Learning (ZSL) addresses this challenge by
enabling the classification of unseen categories using side
information such as semantic attributes or natural language
descriptions. One foundational method, proposed by Zhang
and Saligrama (2015), introduced Semantic Similarity Embed-
ding (SSE): it maps both source domain data (attributes) and
target domain data (visual features) into a shared semantic
space where the similarity is defined via inner product on
mixture histograms of seen class proportions. Their max-
margin formulation learns class-dependent feature transforma-
tions that generalize well to unseen classes while remaining
robust to noise. To extend ZSL beyond traditional attribute-
based approaches, models like CLIP (Radford et al., 2021)
[20] and LiT (Zhai et al., 2023) [21] leverage vision language
contrastive pretraining, aligning text and image modalities into
a shared embedding space. CLIP, trained on 400M image-
text pairs, computes zero-shot classifier weights from textual
prompts, enabling remarkable generalization across down-
stream tasks. LiT improves on this by “locking” the image
encoder and tuning only the text side, reducing training time
while maintaining performance. Yet, standard ZSL methods
often fail under the Generalized Zero-Shot Learning (GZSL)
setting, where models must correctly classify both seen and
unseen classes. To overcome the bias toward seen classes,
Zhang and Zhang (2024) [22] proposed a Semantic Feedback
(SF) module integrated into a f~-VAEGAN architecture. This
model uses instance-level contrastive learning and semantic
consistency constraints to ensure that generated features are
semantically aligned with both seen and unseen class dis-
tributions, improving discriminative capacity under GZSL.
Transformer architectures have also shifted the landscape of
representation learning. The Vision Transformer (ViT) (Doso-
vitskiy et al., 2020) [23] replaced convolutions with self-

attention, enabling scalable and interpretable image modeling.
Extensions such as Tokens-to-Token ViT (Yuan et al., 2021)
[24] and DINOv2 (Oquab et al., 2024) [25] optimize token
aggregation and self-supervised pretraining to learn robust,
transferable features. Notably, DINOv2 showed that dense
patch-level representations are essential for localization and
grounding—properties valuable for tasks like vehicle detection
and fine-grained recognition. For fine-tuning and adaptation,
prompt-based learning has become a lightweight yet powerful
alternative. Zhou et al. (2022) [26] introduced Context Opti-
mization (CoOp) for CLIP-like models, replacing handcrafted
prompts with learnable context tokens. CoOp achieves over
15In the domain of vehicle recognition, Dong et al. (2024) [18]
enhanced ViT-based classification with multi-scale patch fu-
sion and inter-class attention, achieving superior performance
over CNNs on BoxCars116k. Similarly, Semiromizadeh et
al. (2025) [19] proposed using 3D spatial attention modules
to capture geometric distinctions across makes and models,
demonstrating the advantage of integrating spatial reasoning in
zero-shot settings. This survey consolidates current progress in
zero-shot learning with multimodal transformers, with a focus
on loss functions, transformer evolution and applications to
vehicle make and model recognition. By synthesizing advances
across CLIP, PaLI, SigLIP, BLIP, and GZSL methods, we
present a unified view of how generalization to unseen cat-
egories can be achieved without direct supervision—an essen-
tial requirement for scalable, real-world visual understanding
systems.

A. Zero-Shot Learning: Conventional vs. Generalized

Zero-Shot Learning (ZSL) enables the classification of
instances from classes unseen during training by leveraging
auxiliary semantic information—such as attributes, word em-
beddings or textual descriptions—to bridge the semantic gap
between seen and unseen categories (Zhang and Saligrama,
2015; Zhang et al., 2017) [27], [28]. In its conventional form,
ZSL assumes that only unseen classes appear during test-
ing, while the more realistic Generalized Zero-Shot Learning
(GZSL) setting includes both seen and unseen classes at infer-
ence time, often leading to a strong bias toward seen categories
(Zhang and Zhang, 2024) [22]. Core ZSL methods project data
into a shared semantic space via visual-to-semantic, semantic-
to-visual, or joint embedding strategies, with foundational
models like Semantic Similarity Embedding (SSE) repre-
senting unseen classes as mixtures of seen class histograms
(Zhang and Saligrama, 2015) [27]. However, challenges such
as the hubness problem, domain shift and noisy or incomplete
semantic descriptors limit ZSL performance, especially in fine-
grained tasks (Zhang et al., 2017; Rezaei and Shahidi, 2020;
Kim et al., 2022) [28] [29] [30] . To overcome these issues,
recent approaches employ vision-language models like CLIP
to extract rich semantic embeddings (Radford et al., 2021)
[20] and integrate multi-source semantic fusion mechanisms
(Yang et al., 2025) [31]. Additionally, generative models like
f-VAEGAN synthesize visual features for unseen classes using
semantic input, with semantic feedback modules incorporating
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contrastive and consistency-based learning to enhance feature
realism and class separability (Zhang and Zhang, 2024) [22].

B. Transformer Architectures in Vision and Multimodal Mod-
els

Transformer-based models have revolutionized visual learn-
ing by replacing convolutions with self-attention, starting with
the Vision Transformer (ViT) (Dosovitskiy et al., 2020) [23],
which processes images as token sequences. To address its
data efficiency limits, variants such as as T2T-ViT (Yuan et
al., 2021) [24] and DINOv2 (Oquab et al., 2024) [25] intro-
duced hierarchical token modeling and self-supervised dense
patch-level training, respectively. These advances improved
representation quality and generalization, critical for zero-
shot tasks. For efficient adaptation, LoRA (Hu et al., 2021)
[32] enabled lightweight fine-tuning through low-rank updates.
Transformers also have advanced vision language pretraining,
where models such as CLIP (Radford et al., 2021) [20] use
contrastive learning on image-text pairs to align modalities
in a shared embedding space. LiT (Zhai et al., 2023) [21]
reduces the computation by tuning only the text encoder,
while SigLIP and SigLIP2 (Tschannen et al., 2025) [33]
adopt sigmoid loss to enhance semantic alignment and avoid
softmax competition. Joint models like PalLI-3 (Chen et al.,
2023) [34] further unify image and text processing in a shared
transformer, enabling strong zero-shot performance with fewer
parameters. Prompt-tuning approaches, such as CoOp (Zhou
et al., 2022) [35], optimize CLIP’s context vectors, enhancing
performance with minimal supervision. These models col-
lectively enable scalable, generalizable and multimodal zero-
shot learning, particularly useful in fine-grained domains like
vehicle recognition.

C. Loss functions in Zero-Shot Learning (ZSL) and Vision-
Language Models (VLMs)

Loss functions are central to aligning visual and seman-
tic modalities in zero-shot and vision-language models. The
widely used contrastive loss, introduced in CLIP (Radford
et al., 2021) [20], maximizes the similarity between match-
ing image-text pairs while pushing apart mismatched ones
using softmax normalization. While effective, this approach
introduces competition between pairs, which can hinder dense
alignment and generalization. To address this, SigLIP and
SiglL.IP2 (Zhai et al., 2023; Tschannen et al., 2025) [33]
[36] propose a sigmoid-based contrastive loss that treats each
image-text pair independently, improving semantic consis-
tency, localization, and robustness key for tasks like fine-
grained vehicle recognition. In generative ZSL, models like
f-VAEGAN (Zhang and Zhang, 2024) [22] synthesize unseen
class features using semantic embeddings. Their loss combines
variational, adversarial, and semantic feedback terms to ensure
discriminative and semantically coherent outputs. Meanwhile,
prompt tuning methods like CoOp [35]learn task-specific con-
text vectors using cross-entropy loss, allowing CLIP to adapt
efficiently with minimal supervision. Together, these diverse

loss formulations drive the generalization ability and flexibility
of modern zero-shot models.

IV. A COMPREHENSIVE VMMR PIPELINE: PROPOSED
METHODOLOGY

The proposed approach integrates data hygiene, prompt en-
gineering, lightweight adaptation, and cascade-style inference,
grounded in recent advances in vision—-language models and
fine-grained recognition literature.

A. Multi-Source Data Consolidation and Duplicate Removal

We merge CompCars, VeRi-776, VehicleID, VERI-Wild,
and a custom dataset into a unified collection using a common
ontology: brand, model, body type, and year range. To avoid
inflated performance due to data redundancy, we remove near-
duplicate images using perceptual hashing (pHash) with a
Hamming distance threshold of < 4, following best practices
to preserve visual diversity without redundancy.

The custom dataset was created by crawling vehicle images
from online sources. Annotation was fully automated using
a two-stage LLM-based pipeline: first, a primary LLM (e.g.,
GPT-4) generated structured labels (make, model, year) and
textual descriptions; second, a secondary LLM verified the
annotations using consistency checks and confidence scoring.
Such dual-LLM pipelines have been shown to match or even
exceed human level annotation in several domains [37].

B. Attribute-Rich Prompt Generation

For each class, we generate three descriptive prompts
using GPT-4o0, incorporating attributes such as color, style,
era, and distinctive visual traits. For example:

“a 2012 lime-green hatchback Mazda2 with swept-
back head-lamps”

Inspired by prompt-augmentation strategies in transformer-
based classifiers, these prompts are carefully tuned to vehicle-
specific visual semantics, enriching vision-language align-
ment.

C. Hybrid Training with LoRA and InfoNCE

LoRA-Based Fine-Tuning: We insert Low-Rank Adapta-
tion (LoRA) modules into the final four vision transformer
blocks of the PaLI-Gemma-3B model, yielding an efficient
adaptation path with just 9M trainable parameters [?].

Supervised CLIP Loss: We use a CLIP loss to align labelled
vehicle images with their corresponding prompts, facilitating
strong visual-text representation learning.

Self-Supervised Multi-View InfoNCE Regularization: We
also incorporate unlabelled Re-ID vehicle images through a
multi-view InfoNCE loss, encouraging viewpoint invariance
without requiring explicit supervision [?]. The total loss is:

1
L= Lcrp + 3 LinfoNCE (H

This hybrid objective enables training that maintains fine-
grained accuracy while leveraging unlabelled data and avoids
catastrophic forgetting common in full fine tuning.
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D. Two-Stage Cascade Inference

Stage 1:

DenseNet-201 Make Classifier: We use a

DenseNet-201 model trained on make classes to serve as a
coarse filter, reducing inter-brand confusion in a 2-Branch 2-
Stage (2B-2S) strategy [10].

Stage 2: Prompt-Based Model Recogniser: From the top-K
predicted brands (K = 5), the input image is compared to all
three prompts of each candidate model via cosine similarity.
The model with the highest average similarity score is selected.
This strategy leverages prompt diversity.

E. Cross-Modal Explainability

We integrate Grad-CAM++ saliency from the vision model
with token-level prompt attention to provide interpretable,
cross-modal justifications. This hybrid explanation enhances
transparency compared to visual only saliency [38].
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