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Abstract—Generative Adversarial Networks (GANs) have
shown immense potential in medical imaging, particularly in
generating synthetic data to address the challenges of limited
annotated datasets. This paper provides a concise overview of key
applications of GANs in medical image augmentation, focusing
on their role in enhancing training data for improved diagnostic
accuracy. We discuss the technical challenges and limitations
associated with GANs, including training instability, mode col-
lapse, and privacy concerns in sensitive medical data. Our work
contributes specifically to the augmentation of histopathology
images and CT slices using various GAN architectures, such as
DCGAN, cGAN, and StyleGAN. Through extensive experimen-
tation on hyperparameters and model architectures, we demon-
strate that GAN-augmented datasets can significantly improve
classifier performance, while carefully addressing privacy risks
by evaluating potential “fingerprints” in synthetic images. These
findings support the clinical utility of GAN-based augmentation
in medical imaging and establish a foundation for future research
on privacy-preserving synthetic data generation.

Index Terms—Generative Adversarial Networks (GANs), data
augmentation, medical imaging, histopathology image synthesis,
CT image generation, privacy in synthetic data.

I. INTRODUCTION

Biomedical imaging has andvanced significantly in recent
years, largely due to the integration of machine learning
(ML) and artificial intelligence (AI) technologies. Among
these advancements, generative models — especially Gen-
erative Adversarial Networks (GANs) — have proven to be
powerful tools for generating synthetic images that resemble
real biomedical images. The progress in GAN development
has unlocked new opportunities for both research and practical
applications, as high-quality synthetic images are now being
produced across various fields using these models.

Large annotated datasets are often essential for achieving
strong performance with deep learning models, yet these
datasets are not always readily available in healthcare. Barriers
include medical data confidentiality, legal restrictions, data
complexity, and the high cost of data labeling. GAN-based
image synthesis methods have been explored as a way to ad-
dress this challenge across different fields, including medicine.
Based on the type of translation between the input and output
domains, GAN-based image synthesis can follow two main
approaches: Latent-to-Image (Z2I), which generates images
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from a latent vector or random noise, and Image-to-Image
(I2I), which translates images from one domain to another.

In recent years, GANs have been widely applied in health-
care for data augmentation, especially in medical imaging,
targeting various data types. Nie et al. [1] proposed context-
aware GANSs to generate computed tomography (CT) images
from magnetic resonance images (MRIs). Similarly, Yang et
al. [2] developed a method using cGANs for MRI image
generation, while Salehinejad et al. [3] applied DCGANSs
to create synthetic chest X-ray images. Frid-Adar et al. [4]
focused on generating synthetic CT images to support liver
lesion classification, and Madani et al. [S] showed that GAN-
based data augmentation improved accuracy over traditional
methods for chest X-ray analysis. Additionally, Ho et al. [6]
demonstrated that diffusion probabilistic models could produce
high-fidelity images on par with GANS, as illustrated by Puria
Azadi et al. [7], who used these models to synthesize high-
quality histopathology images of brain cancer.

Various GAN architectures have been adapted for special-
ized tasks in histopathology: InfoGAN for stain normalization
[8], CycleGAN for ink mark removal [9], the Pix2Pix model
for segmentation [10], and GAN models for generating label
masks to create histological samples [11]. Super-resolution
GANSs have also been applied to enhance image resolution.

For data augmentation, Quiros et al. [12] introduced Pathol-
ogyGAN, a framework that synthesizes H&E-stained colorec-
tal and breast cancer tissues through a structured latent space,
combining BigGAN, StyleGAN, and the Relativistic Average
Discriminator, with performance assessed using FID scores
for varying dataset sizes. Jerry Wei et al. [13] employed
CycleGANs to generate synthetic colorectal polyp images
from normal mucosa, with Turing tests by four gastrointestinal
pathologists revealing that at least two could not statistically
distinguish synthetic images from real ones. Liu et al. [14]
used GANs to augment histological glioma specimens to
improve IDH mutation status prediction from H&E slides.
Boyd et al. [15] extended the visual field of histopathology
tiles from lymph node whole-slide images, achieving FID
scores around 21 for the CAMELYON17 (breast cancer) and
37 for the CRC (colorectal cancer) datasets.

This paper presents a short overview of the main applica-
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tions of GANs in medical imaging, examines key challenges
and limitations, and highlights our contributions to the field,
specifically in the synthesis of histopathology images and CT
slices.

II. VARIANTS OF GANS

Generative Adversarial Networks [16] are used to generate
new data by learning an implicit representation of the dataset
distribution. GAN’s consist in a pair of networks: generator (G)
and discriminator (D). The G is responsible for crating new
data samples by learning to mimic the underlying distribution
of the original dataset. The D is a classifier that evaluates
these generated images alogside the real images, determining
whether each sample is “real” or “fake”. During training,
the G continuously tries to improve its outputs to “fool”
the discriminator, while the discriminator refines its ability
to detect fake images. This adversarial process drives both
networks to improve iteratively, resulting in the generator
producing increasingly realistic images as training progresses.

In this section, we focus on the specific types of GANs
that we’ve employed in our work so far: Deep Convolutional
GAN (DCGAN) [17], Conditional GAN (cGAN) [18], and
StyleGAN [19]. These variants were selected for their unique
capabilities in generating high-quality synthetic images tai-
lored to medical imaging applications. DCGAN leverage deep
convolutional layers to enhance image quality and stability,
which is valuable in generating realistic medical images with
preserved structural features. cGANs allow for controlled
image generation by conditioning on specific class labels,
making them particularly useful for producing distinct tissue
types in histopathology. Figure 1 presents the comparison of
the original GAN method and the cGAN method. StyleGAN,
known for its innovative style-based architecture, provides
fine-grained control over generated image features, facilitating
the synthesis of highly detailed images that maintain the
complexity of medical images. Each of these GAN types
contributes specific strengths to our work, enabling us to cre-
ate diverse, clinically relevant synthetic images that enhance
dataset quality and support reliable model training.

III. CHALLENGES AND LIMITATIONS OF GANS IN
MEDICAL IMAGING

While GANSs offer significant promise in medical imaging,
their practical application is not without challenges. The
unique complexities of medical data, combined with the tech-
nical limitations of GANs, present several obstacles that can
impact the accuracy, reliability, and clinical applicability of
these models.

Training Instability: The training process needs careful
balancing between the G and the D. Without this syncroniza-
tion, it is difficult to obtain stable training results, leading to
poor convergence and difficulty in achieving the desired image
quality and realism. This instability is particularly problematic
in medical imaging, where accurate and reliable image syn-
thesis is crucial. Additionally, as GANs are based on deep
neural networks, they inherit the interpretability challenges
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Fig. 1: Comparison of original GAN and cGAN methods. G
and D denote the generator and discriminator networks, with
X real and X fake as real and generated samples, respectively.
In cGANS, class labels are also provided to the generator,
enabling it to generate samples conditioned on these labels.
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commonly associated with neural networks, which can make
it difficult for researchers and clinicians to understand the
underlying processes that drive the generation of synthetic
images [20].

Mode Collapse: is a common issue in GANs, where the
G produces a limited variety of images that lack diversity,
often leading to images with similar features. This issue can
be particularly problematic in medical imaging applications
where capturing the full diversity of clinical presentations is
essential. For instance, generating synthetic images that fail
to represent rare cases or atypical manifestations can lead to
biased models that overlook critical variations in patient data.
This lack of diversity in synthetic images can skew the training
process, resulting in models that may perform well on common
cases but struggle with uncommon or complex cases [20].

Evaluation Metrics: One of the biggest challenges in
GAN-based image synthesis for medical imaging is the lack of
standardized, clinically relevant evaluation metrics. Traditional
metrics, such as Fréchet Inception Distance (FID) and Incep-
tion Score (IS), measure image quality and diversity but may
not reflect clinical utility or relevance. In the medical field,
the synthesized images need to be not only visually realistic
but also clinically accurate. This discrepancy complicates the
assessment of GANs in medical applications, where human
evaluation by clinicians is often required to confirm the quality
and usefulness of generated images, adding time and cost to
the validation process [21].

Privacy and Confidentiality Ethical Concerns: The use of
GANs in medical imaging raises significant concerns related
to data privacy, confidentiality, and regulatory compliance.
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(b) Example of mode collapse in GAN models.

Fig. 2: Examples of GAN model failures in data generation.

Regulations such as the General Data Protection Regulation
(GDPR) [22] in Europe and the Health Insurance Portability
and Accountability Act (HIPAA) [23] in the United States
enforce strict guidelines on the handling of personal and
medical data. While synthetic data generated by GANs is
often seen as a solution to the scarcity of annotated datasets
in healthcare, questions remain about whether this data can
be truly “anonymized”. A primary concern is the potential for
synthetic images to contain identifiable features, or “finger-
prints” from the original training data [24], [25]. This poses a
risk that generated images might retain subtle yet identifiable
features of the source data, which could compromise patient
privacy if the images are traced back to specific individuals.

Figure 2 illustrates the two presented challenges: training
instability, which results in distorted CT slices that do not
adhere to anatomical structures, and mode collapse, where the
generator repeatedly produces the same high-quality sample
capable of fooling the discriminator.

IV. OUR CONTRIBUTIONS

In this section, we outline our contributions to advancing
GAN-based image augmentaion in medical images, with focus
on histopathology and CT images. By leveraging different
GAN architectures, we address challenges in generating syn-
thetic images that are diverse, realistic and privacy-preserving.

A. Synthetic Colorectal Cancer Histopathology Image Aug-
mentation Using Conditional Generative Adversarial Net-
works

We propose a latent-to-image approach for generating syn-
thetic images by applying a Conditional Deep Convolutional
Generative Adversarial Network for generating images of
human colorectal cancer and healthy tissue. We generate
high-quality images of various tissue types that preserve the
general structure and features of the source classes. The quality
of these images is evaluated through perceptual experiments
with pathologists and the Fréchet Inception Distance (FID)
metric. Using the generated data to train classifiers signifi-
cantly improved MobileNet’s [26] accuracy by 22.1%, and also
enhanced the accuracies of DenseNet [27], ResNet [28], and
EfficientNet [29]. We further validated the robustness and ver-
satility of our model on a different dataset, yielding promising
results. Additionally, we make a novel contribution by address-
ing security and privacy concerns in personal medical image
data, ensuring that training medical images “fingerprints” are
not contained in the synthetic images generated with the model

Real
images

Fig. 3: Examples of real and synthetic images for NCT-CRC-
HE-100K colorectal cancer dataset: (a) DEB, (b) LYM, (c¢)
MUS, (d) STR, (e) TUM, (f) MUC, and (g) NORM.
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we propose. Figure 3 allows a visual comparison by showing
tissue samples generated by our method alongside a sample
produces by PathologyGAN [12], except for the NORM
tissue type, which they did not generate in their work. The
generated images preserve the general structure and features
of the original tissue types, illustrating the effectiveness of our
synthetic data generation process.

Further details regarding our methodologies, experimental
setup, and comprehensive results will be presented in an
upcoming publication. In the interest of this workshop, we
have included only a summary of key findings.

B. CTs Slices Augmentation using different GANs

For CT images, we experimented with various GAN ar-
chitectures, including DCGAN, cGAN, and StyleGAN, to
identify models that effectively address training instability and
mode collapse. By optimizing model architectures and training
protocols, we aimed to improve the reliability and quality of
CT image synthesis. In our work on augmenting CT slices
using various GAN models, we experimented with a range
of parameters for both G and the D networks to optimize
performance and avoid the challenges presented in Section III.
Specifically, we tested different values for the learning rate (Ir)
to find the optimal balance between stability and convergence
speed. Additionally, we explored variations in the 51 and 52
parameters of the Adam optimizer, which control the mo-
mentum and adaptivity of the learning process, affecting how
quickly and effectively the networks learn. Adjustments to the
latent dimension were also investigated to determine how the
complexity of the generated samples could be enhanced while
maintaining training efficiency. Table I present the hyperpa-
rameters tested in our studies so far. Through these parameter
explorations, we aimed to improve the quality and diversity of
generated CT slices, ensuring realistic augmentations suitable
for medical imaging applications. Further details, including
an in-depth analysis of the generative capabilities of different
GAN models, experimental findings, and evaluations of the
generated data, will be presented in an upcoming publication.
Figure 4 presents some of the results obtained using different
variations of the architectures presented in Section II.

One step further, we examine privacy risks in synthetic CT
images generated by each GAN model through their use in the
ImageCLEF benchmarking campaign for our GANs task [24],
[25]. In this evaluation, we assess the potential presence of
“fingerprints” or residual identifiable patterns in the synthetic
images that might inadvertently disclose details of the original
data, thereby addressing important privacy concerns.

TABLE I: Hypermeter values and latent dimensions used in
our studies.

Parameter Value
Learning rate {0.0001, 0.0001, 0.0002, 0.001}
1 {0.5, 0.9}
82 £0.9, 0.99, 0.999}
Latent dimension {50, 100, 500, 1000}

(d) StyleGAN

Fig. 4: Examples of images generated with different GANs
architectures.

V. DISCUSSION AND CONCLUSIONS

This paper highlights the application of Generative Adver-
sarial Networks (GANSs) in medical image augmentation, with
a focus on histopathology images and CT slices. By employing
different GAN architectures, such as DCGAN, cGAN, and
StyleGAN, we demonstrated the potential of synthetic data
generation to enhance training datasets.

Future work should focus on refining GAN architectures to
further enhance image quality, stability, and interpretability, as
well as developing robust privacy-preserving techniques to en-
sure synthetic images remain fully anonymized. Additionally,
improving evaluation metrics tailored specifically to clinical
relevance will be essential for validating GAN applications in
healthcare.
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