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Abstract—Zero-Shot Learning (ZSL) is an innovative approach
in computer vision that enables models to recognize classes
they have not encountered during training. Unlike traditional
supervised methods, ZSL leverages semantic relationships, such
as attributes or embeddings, to enable inference about novel
categories. This capability is especially useful in fine-grained
tasks like vehicle recognition, where identifying specific car
makes and models requires generalization with minimal labeled
data. Vehicle recognition in a ZSL context faces significant chal-
lenges, including subtle inter-class similarities and considerable
intra-class variability, often influenced by environmental factors.
Recent advancements address these challenges by employing
multimodal models and vision-language representations, such
as CLIP, RegionCLIP, and PaLI-GEMMA. These models use
both visual and textual data, establishing joint embedding spaces
for improved classification of unseen classes. Additionally, Large
Vision-Language Models (LVLMs) provide enhanced multimodal
input fusion, incorporating context from Large Language Models
(LLMs) to generate detailed, context-rich vehicle descriptions.
This study proposes a combined approach utilizing CLIP, Re-
gionCLIP and PaLI-GEMMA to embed vehicles within a shared
visual-semantic space, complemented by LLM-generated descrip-
tions. Our approach demonstrates enhanced ZSL performance,
improving recognition of unseen car makes and models.

Index Terms—Zero-shot learning (ZSL), Vehicle recognition,
Multimodal models, Object detection, Vehicle re-identification

I. INTRODUCTION

In traditional supervised learning, models rely on large,
labeled datasets to learn specific classes, limiting their ability
to generalize beyond the trained categories. ZSL [4] addresses
this limitation by transferring knowledge from known classes
to unknown ones, leveraging semantic relationships through at-
tributes or embeddings. This approach is particularly valuable
for fine-grained recognition tasks, such as vehicle recognition,
where models must identify specific car makes and models
despite limited or absent labeled data.

The need for ZSL in vehicle recognition is underscored by
challenges in acquiring diverse, high-quality labeled data for
every possible make and model. Vehicles often exhibit sub-
tle design differences, resulting in high inter-class similarity
across models and substantial intra-class variability within a
single model. These visual subtleties are further complicated
by environmental factors, including variations in lighting,
angles, and occlusion, which can impair the model’s ability

to generalize effectively [2]. Consequently, ZSL [5] offers a
promising solution by enabling models to infer class rela-
tionships from shared characteristics, for example in allowing
accurate recognition of unseen vehicle categories.

Recognizing specific car makes and models in a ZSL setting
introduces unique challenges. Cars from different manufactur-
ers or models often share visual characteristics, making inter-
class similarity a prominent issue. Furthermore, cars of the
same model can vary based on modifications, year or color,
adding intra-class variability that complicates classification.
These factors demand a robust recognition system capable
of distinguishing fine details without reliance on exhaustive
labeled data. The visual ambiguity in vehicle recognition
requires ZSL models that can accurately represent semantic
relationships to generalize across varied vehicle categories.

Recent ZSL models incorporate multimodal and vision-
language frameworks to address the complexities of objects
recognition. Key approaches include models like CLIP [1] and
RegionCLIP [3], trained on extensive image-text datasets to
create joint embedding spaces. CLIP enables zero-shot classifi-
cation by aligning images with textual prompts, while Region-
CLIP enhances this by focusing on region-specific features,
allowing for finer visual-text alignment crucial for detailed
object detection. Vision-Language Models (VLMs), such as
PaLI-GEMMA [6], extend these capabilities by integrating
both vision and language processing to create a contextual
understanding across modalities, vital for distinguishing nu-
anced features, like vehicles attributes. Large Vision-Language
Models (LVLMs) are pivotal for combining visual and textual
data streams in a unified framework. These models typically
include a vision encoder ViT, a text tokenizer, a projection
layer like an MLP for aligning visual and textual embeddings,
and a fusion mechanism that merges these embeddings before
inputting them into a Large Language Model (LLM). This
setup allows for robust multimodal input processing, with
text outputs providing a grounded context that aids in vehicle
recognition. The integration of LLMs further enhances this
process by generating contextually rich prompts, enabling ZSL
models to refine embeddings for visually similar classes with
greater accuracy.

This study introduces a combined approach using CLIP,
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RegionCLIP, and PaLI-GEMMA for ZSL-based vehicle recog-
nition. By embedding vehicle features within a shared visual-
semantic space, these models facilitate recognition through
both image embeddings and descriptive prompts. An added
car detection module enables precise localization of vehicles in
images, while LLM-generated descriptions provide contextual
depth. This approach leverages multimodal embeddings to
enrich vehicle recognition under a ZSL framework, demon-
strating improved model generalization for unseen car makes
and models.

II. RELATED WORK

A. Attribute-Based Models

Attribute-based models are a foundational approach in Zero-
Shot Learning (ZSL), where the focus lies on representing
classes through a set of human-defined or learned attributes.
For objects, common attributes include ”color,” ”shape,” and
”size,” while in the context of vehicle recognition, attributes
like ”body style,” ”engine type,” and ”wheel design” are
used to describe different car models. These attributes play
a crucial role in enabling models to map unseen classes to
known classes by leveraging shared features between them.
The concept of using attributes for ZSL was first introduced by
Lampert et al. (2009) [8], who laid the groundwork for using
such representations in unseen class recognition tasks. Over
time, this concept has evolved, with significant advancements
such as Xian et al. (2018) [5], who developed a framework for
applying attribute-based information to generalized ZSL tasks.

B. GAN-Based Models

Generative Adversarial Networks (GANs) [9] [10] have
been applied in ZSL to generate synthetic data for unseen
classes. The key idea is that GANs can learn the distribution
of known class features and then generate plausible instances
of unseen classes by sampling from this learned space. This
has been crucial in tasks where labeled data for new categories
is challenging. In [11] is demonstrated that GANs can be used
to generate synthetic images of unseen categories by learning
from the attributes of seen classes using text descriptions. This
technique can be extended to vehicle recognition by generating
images of cars with unseen features or makes. GANs have
been especially effective when coupled with attribute-based
methods, where the model generates images conditioned on
the attributes of an unseen vehicle class.

C. Traditional VMMR system

VMMR systems are responsible for identifying the spe-
cific make, model and potentially the year of manufacture
of vehicles within an image, following the initial detection
phase. According to Boukerche and Ma (2021) [12], tradi-
tional VMMR systems rely on deep learning methodologies,
particularly Convolutional Neural Networks (CNNs), to extract
and classify vehicle features. The VMMR process is a sub-
category of fine-grained recognition, where subtle inter-class
similarities and significant intra-class variances pose unique
challenges. For example, two different car models may look

Fig. 1: Overview of the coarse to fine vehicle recognition
procedure from [12]

very similar (high inter-class similarity), while the same model
may vary due to color, modifications, or different model years
(high intra-class variability). The authors note that environ-
mental factors such as lighting, camera angles, and occlusions
significantly impact recognition accuracy. Additionally, mod-
ifications to vehicles (e.g., added decals or accessories) and
dataset limitations are critical challenges for robust VMMR
performance. Traditional methods may incorporate License
Plate Recognition (LPR) as an adjunct to VMMR; however,
issues like damaged or obscured plates limit LPR’s reliability,
making visual recognition methods more critical.

III. METHODOLOGY

A. Challenges Specific to ZSL in Vehicle Recognition based
on VLM

The approach for Zero Shot Learning in vehicle recognition
presented in this article leverages vision-language models
(VLMs), with a particular emphasis on the capabilities of
the PaLI-GEMMA model. By integrating visual and language
processing, PaLI-GEMMA facilitates a deeper contextual un-
derstanding necessary for identifying and distinguishing be-
tween different vehicle makes and models, even under zero-
shot scenarios where labeled data for certain classes may be
unavailable. This model’s structure allows for the creation of
rich multimodal embeddings, enhancing the system’s ability
to generalize and accurately recognize unseen vehicle cate-
gories. PaLI-GEMMA is an advanced, open vision-language
model that extends the PaLI series by integrating it with
the Gemma family of language models. It builds on PaLI’s
lineage, which began with models like the original PaLI using
a classification-pretrained Vision Transformer (ViT) and mT5
language model. PaLI-GEMMA strikes a balance between
model size and performance, combining a 400M SigLIP vision
encoder with a 2B Gemma language model into a compact
sub-3B architecture. The architecture’s integration of SigLIP
for visual representation and the auto-regressive decoder-only
Gemma model for language processing makes PaLI-GEMMA
versatile and efficient for a wide range of vision-language
tasks. This includes standard benchmarks like COCO captions
and VQAv2, as well as specialized challenges like remote-
sensing visual question answering (VQA) and referring expres-
sion segmentation. For vehicle recognition, PaLI-GEMMA’s
architecture is particularly beneficial due to its ability to effec-
tively process and align visual and textual data. It can handle
complex scenes with multiple vehicles, extracting detailed
attributes and generating descriptive outputs that identify the
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Fig. 2: Example of vehicle recognition output from the PaLI-
GEMMA model. The model accurately identifies the car’s
make, model, and color from an image, responding with ’black
golf’.

make, model and colour of the car. The model’s smaller,
optimized design allows it to perform high-level recognition
while maintaining computational efficiency, making it well-
suited for applications that require comprehensive vehicle
analysis in diverse and potentially dense visual contexts. Other
VLM tested and pretrained for vehicle recognition is CLIP,
developed by OpenAI, that uses a dual-encoder architecture
that aligns images and text in a shared embedding space,
making it highly effective for zero-shot tasks by enabling
prompts such as ”blue sports car” or ”sedan with a specific
logo” to retrieve relevant images and classify vehicle attributes
without specific prior training on them. Its ability to map
images and textual descriptions allows CLIP to be leveraged
for tasks like identifying the make and model of a vehicle by
using tailored prompts. Another model utilised is BLIP-2, an
evolution of BLIP, that enhances vision-language alignment
by incorporating a transformer-based vision encoder with a
text decoder that excels in generating detailed captions and
understanding visual context. This helps in scenarios where
recognizing not only the make and model but also unique
series information is needed by generating text outputs that
describe the car in detail, supported by the model’s capability
to process complex multimodal inputs. Llava, a recent vision-
language model, is designed for image question-answering
and multimodal dialogue, utilizing a highly refined alignment
between its visual encoder and language model to respond to

specific queries about vehicle details like ”What car make and
model is shown in the image?”. Its conversational capability
allows for iterative refinement and clarification, useful for
complex vehicle recognition tasks. PaLI-GEMMA, an ad-
vanced model designed for tasks involving multilingual and
multimodal understanding, employs a mix of transformers op-
timized for text and image cross-modal tasks and is capable of
processing dense scenes with multiple vehicles to identify their
make, model, and series through sophisticated localization and
attribute extraction. Each of these models brings its unique
architectural strengths: CLIP’s robust embedding alignment
for quick zero-shot matching, BLIP-2’s detailed image-caption
generation, Llava’s interactive Q&A for specific detail extrac-
tion, and PaLI-GEMMA’s capacity to handle complex, scene-
dense tasks.

B. Current Datasets utilized in training

• Stanford Cars Dataset [13]: It contains 16,185 images of
196 different car models across 10 categories. Each image
in the dataset is labeled with the car’s make, model, and
year, making it a comprehensive dataset for both training
and evaluation of vehicle recognition models.

• CompCars Dataset [14]: The CompCars dataset is a
large-scale dataset designed for car recognition and com-
parison. It contains over 136,000 images of cars from
1,687 different car models, categorized into multiple
types such as sedans, SUVs, and coupes. The dataset
provides detailed annotations not only for the car make
and model but also for car parts such as the front, side,
and rear views. This diversity in view points is beneficial
for training models to recognize vehicles from different
angles and under varying conditions, which is critical
for real-world applications.

• VehicleID Dataset: The VehicleID dataset focuses specif-
ically on vehicle re-identification tasks, but it is also
widely used for make and model classification. It includes
over 220,000 images of more than 13,000 vehicles, dis-
tributed across 2,500 different car models. This dataset is
designed to simulate the challenging task of identifying a
specific vehicle across different cameras and viewpoints.

• VMMR Dataset [15] : The VMMR dataset is another
large-scale collection specifically tailored for car make
and model recognition tasks. It includes over 120,000
images of vehicles from 1,000 different car makes and
models. The dataset is structured to support both super-
vised and zero-shot learning tasks, making it valuable for
training conventional machine learning models and fine-
tuning Vision-Language Models for recognizing vehicles
in unseen scenarios.
5. Car Connection Dataset: The Car Connection dataset
is unique in that it focuses not only on vehicle make
and model but also includes attributes such as vehicle
features, trim level and market region. This dataset offers
a more granular level of detail compared to traditional car
recognition datasets and is particularly useful for fine-
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tuning VLM. The dataset contains over 10,000 labeled
images.
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